
1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Large-Scale Analysis of Docker Images
and Performance Implications for

Container Storage Systems
Nannan Zhao1, Vasily Tarasov2, Hadeel Albahar1, Ali Anwar2, Lukas Rupprecht2, Dimitrios Skourtis2,

Arnab K. Paul1, Keren Chen1, and Ali R. Butt1

Abstract—Docker containers have become a prominent solution for supporting modern enterprise applications due to the highly
desirable features of isolation, low overhead, and efficient packaging of the application’s execution environment. Containers are
created from images which are shared between users via a registry. The amount of data registries store is massive. For example,
Docker Hub, a popular public registry, stores at least half a million public images. In this paper, we analyze over 167 TB of
uncompressed Docker Hub images, characterize them using multiple metrics and evaluate the potential of file-level deduplication. Our
analysis helps to make conscious decisions when designing storage for containers in general and Docker registries in particular. For
example, only 3% of the files in images are unique while others are redundant file copies, which means file-level deduplication has a
great potential to save storage space. Furthermore, we carry out a comprehensive analysis of both small I/O request performance and
copy-on-write performance for multiple popular container storage drivers. Our findings can motivate and help improve the design of
data reduction and caching methods for images, pulling optimizations for registries, and storage drivers.

Index Terms—Containers, Docker, Container images, Container registry, Deduplication, Docker Hub, Container storage drivers.

F

1 INTRODUCTION

Recently, containers [1], [2] have gained significant traction
as an alternative to virtual machines [3] for virtualization
both on premises and in the cloud. Moreover, containers
are increasingly used in software development and test au-
tomation [4], and are becoming a key part in the release life
cycle of an application [5]. In contrast to Virtual Machines
(VMs), containers share the operating system kernel but are
isolated in terms of process visibility (via namespaces [6])
and resource usage (via control groups [7]). As a result,
containers require fewer memory and storage, start faster,
and typically incur less execution overhead than VMs [8]–
[10].

A driving force of the fast container adoption is the pop-
ular Docker [11] container management framework. Docker
combines process containerization with convenient pack-
aging of an application’s complete runtime environment
in images. For storage and network efficiency, images are
composed of independent, shareable layers of files. Images
and their corresponding layers are stored in a centralized
registry and accessed by clients as needed. Docker Hub [12]
is the most popular registry, currently storing almost 4
million public image repositories comprising approximately
20 million layers.

While the massive image dataset presents challenges to
the registry and client storage infrastructure, storage for
containers has remained a largely unexplored area. We be-
lieve one of the prime reasons is the limited understanding
of what data is stored inside containers. This knowledge
can help improve the container storage infrastructure and

• N. Zhao, H. Albahar, A. Paul, K. Chen, and A. Butt are with the
Department of Computer Science, Virginia Tech, Virginia, VA, 24061.

• V. Tarasov, A. Anwar, L. Rupprecht, and D. Skourtis are with IBM
Research-Almaden, CA 95120.

Manuscript received April 19, 2005; revised August 26, 2015.

ensure scalability of and fast accesses to the registry service.
Existing work has focused on various aspects of container-
ization [13]–[18]. However, the registry and its contents have
yet to be studied in detail.

In this paper, we perform the first, comprehensive, large-
scale characterization and redundancy analysis of the im-
ages and layers stored in the Docker Hub registry (§2). We
download all latest versions of publicly accessible images
from Docker Hub (as of May 2017), which amount to 47 TB
of compressed image data (§3). Based on that dataset, we
analyze the storage properties of images, such as the size
and compression ratio distributions of layers and images,
directory and file distributions, as well as Docker-specific
properties, e.g., the number of layers per image, image
popularity, and the effectiveness of layer sharing (§4).

We investigate the potential for data reduction in the
Docker registry by using file-level deduplication (§5). We
observe that 97% of the files are file duplicates and removing
these duplicates can reduce storage space utilization by
50%. This suggests that file-level deduplication has a great
potential to save storage space for large-scale registries. To
understand why there are so many file duplicates, we fur-
ther analyze the files stored in images and observe that the
majority of files are executables, object files, libraries, source
code, and scripts. The deduplication ratio among these file
types is high, suggesting that there are a high number of
similar images and layers, built for similar applications.

Once retrieved from the registry, images and layers are
locally stored and managed by container storage drivers.
As the performance of these drivers can largely impact
container startup, build, and execution time, we perform
a comprehensive analysis on popular storage drivers based
on the key insights from our image characterization. First,
we analyze the layer pulling latency distribution for the
images from the Docker Hub dataset and propose various
optimizations for speeding up container startup times (§6).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Docker host

Docker client

R/W layer

PHP
MySQL

Base image: Ubuntu

Image layers

(Read only)

Container layer

Docker daemon
Host OS

Container Container Container

Hardware

docker pull
docker push
docker build
docker run

docker push docker pull image image

Docker hub

Fig. 1: Docker ecosystem

Second, we observe that files are small while layers and
images contain many files. For example, 90% and 50% of
files are smaller than 26 KB and 4 KB respectively while 80%
of images have more than 15 K files, which implies that the
small I/O request performance is important for container stor-
age drivers. Therefore, we study the small I/O performance
for different popular container storage drivers (§7). Based
on our analysis, we derive several design implications for
storage drivers, e.g., storage drivers should be optimized
for both small reads and small writes, especially overwrites
of the files that already exist in read-only layers.

2 BACKGROUND AND RELATED WORK

In this section, we introduce the background on Docker and
discuss related work on Docker container analysis.

2.1 Docker

Docker is a popular containerization framework. It auto-
mates the creation and deployment of application containers
by providing the capability to package an application with
its runtime dependencies into a container image and then
running this images on a host machine [11]

As shown in Figure 1, the Docker ecosystem consists
of several components. Users interact with Docker via the
Docker client, which sends commands to the Docker daemon.
The daemon is responsible for running containers from
locally available images. Additionally, the daemon supports
building new images and pushing them to a Docker registry.
When a user wants to launch a container from an image that
is not available locally, the daemon pulls the required image
from the registry.
Images and layers. An image is represented by a manifest
file, which contains a list of layer identifiers (digests) for
all layers required by the image. Docker images consist
of a series of individual layers. A layer contains a subset
of the files in the image and often represents a specific
component/dependency of the image, e.g., a library. This
modular design allows layers to be shared between two
images if both images depend on the same component.
Docker registry. The Docker registry is a platform for
storing and sharing container images. It stores images in
repositories, each containing different versions of the same
image. Image layers are stored as Gzip compressed archival
files and image manifests as JSON files [12].

Container storage drivers. When a user starts a container,
the storage driver is responsible for creating the container
root file system from the layers, e.g., by union mounting
the layers into a single mount point. As image layers are
read-only to allow sharing across containers, the driver also
creates a new writable layer on top of the underlying read-
only layers (see Figure 1). Any changes made to files in the
image will be reflected inside the writable layer via a copy-
on-write (CoW) mechanism.

Docker supports multiple storage drivers, e.g., over-
lay2 [19], devicemapper [20], zfs [21], and btrfs [22], which
efficiently manage read-only and writable layers in a single
file-system namespace using CoW [23]. According to the
copy-on-write granularity of different storage drivers, we
split the storage drivers into two main groups: File-level
CoW and Block-level CoW. File-level CoW incurs a perfor-
mance and space penalty as it copies the entire file from
a lower layer when the container modifies the file, even if
the modification is small [24], [25]. Compared to file-level
drivers, block-level drivers perform CoW at block granular-
ity. Consequently, these drivers provide more efficient usage
of disk space and incur less overhead during writes [24].

2.2 Related Work on Docker images and containers.

We structure the related work into two main categories:
1) analysis of container images content, and 2) container
performance analysis.
Analysis of container images content. Several works have
characterized different numbers of Docker images to un-
derstand various properties [14], [16], [17], [26] focusing
on quality, vulnerabilities, and security issues. For example,
Cito et al. [15] conducted an empirical study to characterize
the Docker ecosystem with a focus on prevalent quality
issues, and the evolution of Docker files based on a dataset
of 70,000 Docker files. Shu et al. [17] studied the security
vulnerabilities in Docker Hub images based on a dataset
of 356,218 images and found there is a strong need for more
automated and systematic methods of applying security up-
dates to Docker images. Compared to the above research, we
focus on the storage properties of Docker images (Section 4).

Slacker [16] studied 57 images from Docker Hub for a va-
riety of metrics. The authors calculated the deduplication ra-
tio of these 57 images and also found that layer pulls can in-
crease container startup time. Compared to Slacker, we did
a deduplication analysis on the entire Docker Hub dataset
(Section 5) and also inspect the content of Docker images
to understand the corresponding applications. Moreover,
we analyzed layer pulling performance by using different
storage options and compression methods in Section 6.
Container performance analysis. Many researchers started
to analyze the performance of Docker containers by com-
paring it to VMs. For example, Seo et al. [27] compared
the performance of Docker with KVM in terms of metrics
such as boot time and CPU performance while Scheepers et
al. [28] compared LXC and Xen virtualization technologies
for distributing resources. Felter et al. [29] evaluated and
compared three different environments, Native, Docker, and
KVM for throughput, CPU overhead, etc. They found that
container performance is better than KVM in terms of boot
time and calculation speed [27] while KVM and Xen take
less time than Docker and LXC to accomplish tasks [29] [28].

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Docker hub

Crawler

Parser

Manifest Parser

Get manifest manifest

Get layers

Get <url>

Page data layers

Docker registry
client library

Manifests Layer tar files

Image list

Analyzer
Extract Profiler

Image profiles Layer profiles

Downloader

Fig. 2: Crawler, Downloader, and Analyzer

Moreover, KVM and Xen are better for equally distributing
resources and have better performance/resource isolation
ability than containers [30]. Compared to the above research,
we focus on container storage drivers which is one of the
key components for efficient execution of a container [24],
[25], [31]–[34]. These works are orthogonal and complemen-
tary to our work.

A number of research papers analyzed the performance
of container storage drivers. Xu et al. [35] presented a
characterization of the performance impact among various
storage and storage driver options and provided configura-
tion settings for better utilizing high speed SSDs. Bhimani et
al. [13] characterized the performance of persistent storage
options for I/O intensive containerized applications with
NVMe SSDs. Tarasov et al. [36] discussed the influence of
different storage solutions on different IO workloads, run-
ning inside containers. Compared with the above studies,
our analysis on container storage drivers is based on the
real Docker image dataset and we consider the content and
storage properties of real images. For instance, we observed
that the majority of files in layers are small while images
and layers have many files. Hence we focus on the small
read and write performance in Section 7. However, the
above work mostly measured I/O performance by read-
ing/writing few large files, or using larger I/O requests [13],
[35], [36].

3 METHODOLOGY AND DATASET

Our image analysis methodology consists of three steps (see
Figure 2): (1) crawler crawls Docker Hub to list all reposito-
ries; (2) downloader downloads the latest version of an image
and all referenced layers from each repository based on
the crawler results; (3) analyzer decompresses and analyzes
images and layers.

We ran the crawler on May 30th, 2017 and it delivered
a list of 457,627 distinct repositories (with 200 official repos-
itories). The whole downloading process took around 30
days. Overall, we downloaded 355,319 images, resulting in
1,792,609 compressed layers and 5,278,465,130 files, with a
total compressed dataset size of 47 TB. In the paper, we an-
alyzed the compressed image dataset and studied a variety
of storage metrics on layers, images, and files.

Fig. 3: CDF of layer size Fig. 4: CDF of image size

Fig. 5: CDF of compression ratios

0 200 400 600 800 1000
Pull count

0

0.3

0.6

0.9
1

C
D

F

Fig. 6: CDF of image pull count

4 IMAGE DATASET CHARACTERIZATION

We center our image analysis around the following three
questions:

1) What are the properties of layers and images in terms
of size, compression ratio, popularity, and directory and
file distribution?

2) What files do developers store in images and what is
the ratio between different types of files?

3) Does redundant data exist inside compressed Docker
registry image dataset and what is the deduplication
ratio?

4.1 Layer and image analysis

We start with the analysis of size, popularity, and structure
for both layers and images to understand the basic proper-
ties of the registry dataset.

4.1.1 Size distribution for layers and images

Figure 3 shows the layer size distribution. As expected,
layers are small with 90% of the compressed layers be-
ing smaller than 63 MB. There are only few large layers.
For example, 0.2% of compressed layers are larger than
1 GB. Downloading and decompressing such large layers
can significantly slow down container startup times. Once
uncompressed, 90% of the layer tar archives are smaller than
177 MB.

To get the image size distribution (shown in Figure 4),
we sum up the sizes of all layers for each image. Images
are significantly bigger than layers. 90% of the images
have compressed sizes less than 0.48 GB and uncompressed
sizes less than 1.3 GB. However, we observe that there is
a considerable amount of small images. 50% of images are
smaller than 17 MB compressed and 94 MB uncompressed.

Figure 5 shows the compression ratio distribution. The
compression ratio is high for both layers and images. We
observe that 50% of layer compression ratios and image
compression ratios are greater than 3.5 and 3.2, respectively.
The high compressibility means that layer archives have
a great potential for compression to reduce layer transfer
latencies.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

0 50 100 150
Layer count

0

0.2

0.4

0.6

0.8

1

C
D

F

Fig. 7: CDF of layer count in images

(a) Directory count

100 101 102 103

Layer directory depth

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Directory depth

Fig. 8: CDF of directory count and directory depth

4.1.2 Image popularity

The assess image popularity, we analyze the pull counts
reported by Docker Hub web page (see Figure 6). The results
demonstrate that there image accesses are heavily skewed.
Only 10% of images are pulled more than 333 times while
50% of images are pulled less than 40 times. This confirms
that there are indeed popular images which can benefit from
caching.

4.1.3 Layer and directory hierarchy

Figure 7 shows the layer count distribution in images. The
majority of images have more than one layer and we observe
that half of the images have more than 8 layers while 90%
of the images have less than 18 layers.

Figure 8(a) shows the directory count distribution for
layers and images. The majority of layers and images have
more than one directory. Half of the layers consist of more
than 11 directories while 90% of the layers have less than 826
directories. For images, 90% have more than 679 directories.

Figure 8(b) shows the maximum directory depth in each
layer. The majority of layers have a directory depth greater
than 2. 50% of the layers have directory depth greater than
4 and 90% of the layers have directory depth less than 10.

4.1.4 File count and file size distribution

Figure 9 shows the file counts in each layer and image. First,
we observe that 77% of the layers have more than one file
and half of the layers have more than 30 files. Second, 28%
of the layers have more than 1,000 files. This large amount of
files will put I/O pressures on the container storage drivers
during image building and container execution. Figure 9
shows the file counts for images. Half of the images have
more than 1,090 files and 10% of images have more than
64,780 files.

Figure 10 shows file size distribution. As expected, files
are small with 90% and 50% of files being smaller than 26 KB
and 4 KB, respectively.

Fig. 9: File count Fig. 10: CDF of file size

0

10

20

30

40

50

EOL Arch. SC Scr. Doc. DB Img. Oths.

Pe
rc

en
ta

ge
 (%

)

Files
Stoage space

(a) File count and Space occupied

0

200

400

600

800

1000

EOL Arch. SC Scr. Doc. DB Img. Oths.

Av
er

ag
e

fil
e

si
ze

 (K
B

)

(b) Average file size

Fig. 11: Commonly used file types

4.2 File types

To understand what kind of files are stored in images, we
first group files based on file types. Overall, our image
dataset consists of 1,500 file types but we observe that
only 133 file types make up 98.4% of the total dataset
size and each one of them types take up more than 7 GB.
We classify these 133 file types as commonly used file types
and the remaining ones as non-commonly used file types as
shown in Figure 13. Our further classification expands on
the commonly used file types. We split the commonly used
file types into 8 type groups based on their usages or func-
tions as follows: EOL (executables, object code,
and libraries), source code, scripts, documents,
archives, images, databases, and others.

4.2.1 Commonly used file type distribution

Figure 11(a) shows the total number of files in each type
group (shown as bars) and the space occupied by each
group (shown as dots). We observe that 44% of files are doc-
ument files such as HTML, ASCII/UTF files, etc. Note that
the type of a file is determined by using the Linux command
file. ASCII/UTF files are plain text files encoded with UTF
or ASCII, which do not match any well-known file types.

As shown in Figure 11(a), 13%, 11%, and 9% of files
are source code, EOL, and scripts, respectively. Source code
and scripts are encapsulated in Docker images for building
dependencies, libraries, and executables (EOL). The EOL
files include the dependencies, libraries, and executables
that an application needs to run. Only 4% of files are image
data files, e.g., PNG, JPEG, etc. Additionally, there are a
small amount of video files, such as AVI, MPEG, etc.

EOL files occupy most of the space, up to 37%, while
archives and documents take 23% and 14% of the space,
respectively. To find how file types relate to file sizes, we
calculate the average file size for each file type group as
shown in Figure 11(b). We observe that the average size of
a database file is significantly larger (978.8 KB) compared to
files within other type groups. The average size of EOL files
is only around 100 KB while scripts and source code files are

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

0

20

40

60

80

100

IR ELF Lib. MS.ex. COFF Pack. Oths.

Pe
rc

en
ta

ge
 (%

)
File count

Storage space

(a) EOL

0
10
20
30
40
50
60
70
80
90

c/c++ per5 m ruby m pascal fortran a.basic scheme oths

Pe
rc

en
ta

ge
 (%

)

File count
Storage space

(b) Source code

0
10
20
30
40
50
60
70

py
tho

n
rub

y
pe

rl ph
p

aw
k

no
de ba

sh

mak
efi

le m4 tcl oth
s.

Pe
rc

en
ta

ge
 (%

)

File count

Storage space

(c) Scripts

0

20

40

60

80

ASCII

HTML
UTF

PDF
Late

x
ISO-X

Com
.do

c
Oths

.

Pe
rc

en
ta

ge
 (%

) File count
Storage space

(d) Documents

0

20

40

60

80

100

Zip/Gzip Bzip2 XZ Tar Oths.

Pe
rc

en
ta

ge
 (%

)

File count
Storage space

(e) Archives

0

10

20

30

40

50

60

Berkeley MySQL Dbase NDBM SQLite Oths.

Pe
rc

en
ta

ge
 (%

)

File count
Storage space

(f) Databases

0
10
20
30
40
50
60
70

PNG SVG JPEG FITS TIFF EPS Oths.

Pe
rc

en
ta

ge
 (%

)

File count
Storage space

(g) Images

Fig. 12: File count and space occupied by the commonly used file types

only 9 KB on average.

4.2.2 Executables, object code, and libraries (EOL)

EOL files make up the core of a Docker image for the correct
execution of an application. The EOL group contains the
following types: ELF files, COFF files, intermediate repre-
sentations that can be executed by a virtual machine, Mi-
crosoft executables, Debian/RPM binary packages, libraries,
and other EOL files.

Figure 12(a) shows the total number of files for each EOL
type. The majority of EOL files are ELF and intermediate
representations (IR). ELF files mainly contain ELF relocata-
bles, shared objects, and executables. Intermediate represen-
tations mainly contain Python byte-compiled files, compiled
java class files, and terminfo compiled files. The majority
of intermediate representations are Python byte-compiled
files. Although intermediate representations constitute up
to 64% of EOL files, 30% of ELF files occupy 84% of the
storage space consumed by the EOL type group as shown
in Figure 12(a). This is because the average size of ELF files
is larger than intermediate representations. The average ELF
file size is 312 KB while the average file size for intermediate
representations is only 9 KB.

4.2.3 Source code

Figure 12(b) shows 7 commonly used programming lan-
guages in our dataset: C/C++, Perl5 module, Ruby module,
Pascal, Fortran, Applesoft basic, and Lisp/Scheme. 80.3%
of source files are C/C++ sources, which take about 80%
of storage space consumed by the source code group. Perl5
module and Ruby module source code represents 11% and
3% of source files, respectively, and make up 9% and 8% of
the space occupied by source code files, respectively.

4.2.4 Scripts

Figure 12(c) shows the script file distribution. The script
group includes: Python scripts, AWK, Ruby, Perl, PHP,
make, M4 macro processor, node, Tcl, Bash/shell, and oth-
ers. 54% of the scripts are Python scripts, which take 66% of
storage space occupied by all scripts. 20% and 10% of scripts
are Bash/shell and Ruby scripts, which only occupy 6% and
5% of storage space, respectively.

4.2.5 Documents (Doc.)

Figure 12(d) shows the documents file distribution. The
majority of the documents are text files including ASCII
text (80%), UTF8/16 text (5%), and ISO-8859 text (0.4%),
which take up to 70% of the storage space occupied by
all documents. Note that these text files are raw text files
as we have already filtered the text based well-known file
types, such as scripts and source codes. 13% of the docu-
ments are XML/HTML/XHTML files, which are related to
web service applications. This is expected as current web
applications are often implemented as microservices, e.g.,
Amazon [37] or Netflix [37].

4.2.6 Archives, Databases, and Images

Figure 12(e) shows the distribution of archive files. 96.3%
are Zip/gzip files which take up to 70% of storage space
consumed by all archive files.

Figure 12(f) shows the commonly used databases in
containerized applications. Berkely DB and MySQL files
are the most prominent, accounting for 33% and 30% of
database files, respectively. In total, Berkely DB and MySQL
files take up to 40% of space occupied by database related
files. While only 7% of database related files are SQLite
DB files, these files occupy over 57% of space among the
database files.

The image data file distribution is shown in Figure 12(g).
67% of image files are PNG files, which take about 45%
of the space occupied by all image files. We also observe
other image data files such as JPEG, SVG, etc., in the
images, which are mostly used by XML/HTML/XHTML
documents for web applications.

5 DEDUPLICATION ANALYSIS

In this section, we investigate the potential for data reduc-
tion in the Docker registry.

5.1 Layer sharing

Compared to other existing containerization frame-
works [38], [39], Docker supports the sharing of layers
among different images to reduce storage utilization for
both local images and images in the registry. To study the
effectiveness of this approach, we compute how many times
each layer is referenced by images.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

All file types (1500)

Commonly used file types (133) Non-commonly used file types (1367)

Executables, object
code, libraries Archives Source code Scripts Documents Database Image

Others

● ELF files
● COFF files
● Intermediate compiled
● MS executables
● Libraries
● Debian/RPM bin.
● Others

● Zip
● Gzip
● XZ
● Bzip2
● Tar
● Others

● C/C++
● Perl5
● Ruby
● Assembler
● Pascal
● Fortran
● Applesoft Basic
● Lisp/Scheme

● HTML/XML/XHTML
● PS/PDF
● LaTex
● Composite
● ASCII text
● UTF-8/16 text
● ISO-8859
● Others

● Python
● AWK
● Ruby
● Perl
● Makefile
● PHP
● Bash/Shell
● M4
● Others

● SQLite
● Berkeley DB
● Dbase
● NDBM
● MySQL
● Others

● PNG
● JPEG
● SVG
● FITS
● TIFF
● EPS
● Others

Fig. 13: Taxonomy of file types

100 102 104 106
Layer reference count

0

20

40

60

80

100

%
 o

f
la

ye
rs

Fig. 14: CDF of layer reference count

100 101 102 103

File repeat count

0

20

40

60

80

100

%
 o
f
fi
le
s

Cumulative distr.

Probability distr.

Fig. 15: File repeat count

Layer dataset size

0

10

20

30

40

D
ed

up
lic

at
io

n
ra

tio

104 105 106 1.7x106103

File count
Storage space

Fig. 16: Deduplication ratios

Specifically, we analyze all image manifests and count
for each layer, how many times it is referenced by an image.
Figure 14 shows that around 90% of layers are only refer-
enced by a single image, an additional 5% are referenced
by 2 images, and less than 1% of the layers are shared by
more than 25 images. From the above data we can estimate
that without layer sharing, the Docker Hub dataset would
grow from 47 TB to 85 TB, implying a 1.8× redundancy ratio
provided by layer sharing.

5.2 File-level deduplication

Next, we calculate the redundancy ratio at file granularity
both in terms of file count and space occupied. After re-
moving the redundant files, only 3.2% of the files are left,
which in total occupy 24 TB. This results in redundancy
ratios of 31.5× for file count and 6.9× for space occupied
compared to the uncompressed image dataset. Compared
to the compressed image dataset, the file-level deduplication
ratio is almost 2×.

We further analyze the number of file copies (i.e., dupli-
cates) for every file (see Figure 15). We observe that over
99.4% of files have more than one copy. Around 50% of files
have exactly 4 copies and 90% of files have 10 or less copies.

This shows that there is a high file-level redundancy in
Docker images which cannot be addressed by the existing
layer sharing mechanism. Hence, there is a large potential
for file-level deduplication in the Docker registry.

0

5

10

15

20

25

30

0
10
20
30
40
50
60
70

EOL Arch. Doc. SC DB Scr. Img. Oths.

D
ed

up
lic

at
io

n
ra

tio

St
or

ag
e

sp
ac

e (
TB

)

unique files
redundant files
dedup. ratio

Fig. 17: Overall dedup. ratios

0

1

2

3

4

5

0

10

20

30

40

50

60

ELF IP PE Pack. Lib. COFF Oths.

D
ed

up
lic

at
io

n
ra

tio

St
or

ag
e

sp
ac

e (
TB

)

unique files
redundant files
dedup. ratio

Fig. 18: EOL dedup. ratios

5.3 Deduplication ratio growth

To further study the potential of file-level deduplication,
we analyze the redundancy for an increasing number of
layers stored in the registry (see Figure 16). We randomly
sample 4 layer subsets from the whole dataset. The x-axis
values correspond to the number of layers in each sample.
We observe that the deduplication ratio increases almost
linearly with the layer dataset size. In terms of file count,
it increases from 3.6× to 31.5× while in terms of space
occupancy, it increases from 1.9× to 6.9× as the layer dataset
grows from 1000 to 1.7 million layers. This confirms the high
benefit file-level deduplication can provide for large-scale
registry deployments.

5.4 Deduplication analysis by file type

In this section, we present the deduplication ratios for the
commonly used file types to understand the distribution
of redundant files in terms of their types and quantity.
Figure 17 shows the deduplication results for the following
type groups: EOL, archives, documents, source code, scripts,
images, and databases. Note that the y-axis shows the space
occupied by different file type groups (shown as bars) and
their corresponding redundant data ratios (shown as dots).
For space occupancy, we separately list space occupied by
unique files and by redundant files.

The deduplication ratios are between 2 and 26, and most
of the type groups have a high deduplication ratio. For
example, the deduplication ratio of EOL files, which include
executables, object files, and libraries, is 4×. Source code
and scripts have the highest deduplication ratio of 16× and
26×. We believe this is because Docker image developers
often use version control systems, such as git, to fetch
similar source code for building similar microservices, and
the code might only differ slightly according to when it was
retrieved.

As expected, database related files have the lowest dedu-
plication ratio of 2× because they store customized data.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0
10
20
30
40
50
60
70
80

0

1

2

3

4

5

C/C++ Perl5 m Ruby m. Pascal Fortran A.Basic Scheme Oths.

D
ed

up
lic

at
io

n
ra

tio

St
or

ag
e

sp
ac

e
(T

B
)

unique files
redundant files
dedup. ratio

Fig. 19: Source code deduplication ratios

5.4.1 Executable, object code, and libraries (EOL)

We further calculate the deduplication ratios for specific file
types in each common type group. We start with the EOL
group since it occupies most of the space and significantly
contributes to the overall space savings after deduplication.

Figure 18 shows the deduplication results for EOL files.
We observe that ELF files, intermediate representations, and
PE files have the highest deduplication ratio of 3.3×-4×.
Libraries and COFF files have the lowest deduplication
ratios: 1.1× and 1.3×, respectively.

5.4.2 Source code

To find out which kind of source code is commonly repli-
cated, we study the deduplication ratios of 7 common
languages as shown in Figure 19. We observe that all the
languages have a high redundancy ratio of 7.3×- 73× except
for A.Basic (1.2×). In particular, C/C++ source files have a
deduplication ratio of 16×. To find out why there are so
many duplicate C/C++ source files, we inspect those files
and find frequently reused source files related to Google
Test [40], a cross-platform C++ test framework available
on GitHub [40]. We suspect that many developers replicate
open source code from external public repositories, such as
GitHub [41], and build it inside their container images. This
could also explain the significant number of shared source
code files across different images. Considering that Docker
Hub allows developers to automatically build images from
source code in external public repositories and automati-
cally push the built image to their Docker repositories, we
believe that replicated source code in different images is a
common case in the Docker Hub registry.

6 LAYER PULLING LATENCY ANALYSIS

Layer pulling performance is critical as it largely affects
the container startup time. The startup time can dominate
short-lived jobs/containers especially for the newly emerg-
ing serverless computing model [42].

In this section, we measure the layer pulling latency
distribution, identify performance bottlenecks, and propose
different methods to reduce the latency. In particular, we
aim to address the following questions.

1) What is the overall layer pull latency distribution for
Docker registries?

2) What is the bottleneck during layer pulling?
3) How do different compression methods impact layer

pulling latency?
4) How do different storage options affect layer pulling

latency?

Testbed. Our testbed consists of two servers, one running a
Docker client and the other running a Docker registry. Each

0.001
0.01

0.1
1

10
100

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

20th 40th 60th 80th 99th

D
ur

at
io

n
(s

) Unpacking Decompression Networking

(a) Average pulling latency breakdown

0.001

0.1

10

1000

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

G
zi

p

Pg
iz

Lz
4

20th 40th 60th 80th 99th

D
ur

at
io

n
(s

) Packing Compression Networking

(b) Average pushing latency breakdown

Fig. 20: Average pulling/pushing latency breakdown. X-axis shows the
layer size percentiles. Y-axis is log-scaled.

0
5

10
15
20
25
30

G
zi

p

Pi
gz Lz
4

G
zi

p

Pi
gz Lz
4

G
zi

p

Pi
gz Lz
4

G
zi

p

Pi
gz Lz
4

G
zi

p

Pi
gz Lz
4

20th 40th 60th 80th 99th
C

om
pr

es
si

on
 ra

tio

Fig. 21: Average compression ratios

server is equipped with 32 cores, 64 GB RAM, a 500 GB SSD,
a 1 TB HDD, and a 10 Gbps NIC.

Layer dataset. To measure the overall layer pulling per-
formance distribution, we first group the layer dataset by
layer size. To capture the overall layer pulling performance
distribution, we select five groups at the 20th, 40th, 60th,
80th, and 99th percentiles of the layer size distribution (see
Table 1). Then, we randomly sample 1000 layers from each
group to study pulling performance.

6.1 Performance breakdown

Pulling a layer includes layer transfer, layer decompression,
and layer unpacking while layer pushing includes layer pack-
ing, layer compression, and layer transfer. Layer compression
can significantly reduce layer size and network transfer
time. We first study the impact of the following three
popular compression methods on layer pulling and push-
ing latency: (1) Gzip, the default compression method for
Docker. (2) Pigz, a parallel gzip compression method, and
(3) Lz4, a fast byte-oriented compression scheme. Note that
we choose a compression level of 9 for all three methods,
which is the high compression mode.

Figure 20(a) shows the average layer pulling latency
breakdown for layers at different size percentiles with differ-
ent compression algorithms. In this experiment, the Docker
client stores layers and their uncompressed content on a
tmpfs disk to reduce packing and unpacking time. As
shown in Figure 20(a), the layer pulling latency increases
dramatically with layer size. Layers at the 20th (3 KB) and
40th percentile (14 KB) show a similar layer pulling latency
of 0.03 s for all three compression algorithms. When the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 1: Docker image distribution

20th percentile 40th percentile 60th percentile 80th percentile 99th percentile
File size 1 KB 2 KB 6KB 18 KB 1 MB

File cnt. / layer 1 2 90 2.6K 50K
File cnt. / Img. 15 K 20 K 35K 50K 230K

Layer cnt. / Img. 6 10 12 19 50
Dir depth / layer 1 3 5 8 18
Dir cnt. / layer 3 4 34 400 7.5K
Dir cnt. / Img. 1.8K 3K 4.2K 6.6K 33K

Layer size 3 KB 14 KB 7.8 MB 53.7 MB 878.9 MB
Img. size 190 MB 280 MB 530 MB 800 MB 4.9 GB

layer size increases from 7.8 MB (60th percentile) to 878.9 MB
(99th percentile), layer pulling latency increases from 0.36 s
to 29 s for Gzip.

Among the three compression algorithms, Gzip has the
lowest decompression speed, especially for large layers. For
example, it takes 18.7 s for Gzip to decompress a 878.9 MB
layer on average. While for Pigz and Lz4, decompression
time is reduced to 10.6 s and 6 s, respectively. Although
Lz4 is up to 3.1× and 1.8× faster than Gzip and Pigz,
respectively, we observe that the network transfer time for
Lz4 is slightly higher (1.2×) than both Gzip and Pigz.
This is because the average compression ratio for Lz4 is
slightly lower (1.2×) compared to Gzip and Pigz as shown
in Figure 21. Consequently, there is a trade-off between
compression ratio (network transfer time) and compres-
sion/decompression speed.

Both Gzip and Pigz show a similar compression ratio
because both are based on the DEFLATE algorithm [43] and
Pigz only parallelizes Gzip compression to achieve faster
compression. We also observe that the compression ratios
decrease with layer sizes (see Figure 21). For example, when
a layer size increases from 3 KB (20th percentile) to 898.9 MB
(99th percentile), the compression ratio decreases from 25.3
to 2.3 for both Gzip and Pigz.

As shown in Figure 20(a), when a tmpfs file system
is used for storing unpacked layer contents, the network
transfer time is the bottleneck for layer pulling performance
for 40% of the layers (layers smaller than 14 KB). For larger
layers, decompression time becomes the bottleneck. Al-
though network transfer time also increases with layer size,
decompression time increases much faster. This is because,
in our setup, the Docker registry and Docker client are
located in the same fast LAN. In this case, a fast compression
algorithm, such as Lz4 or Pigz, is crucial for speeding up
layer pulling.However, if images are accessed from a remote
registry over a wide area network, the bottleneck can shift
again back to the network.

Figure 20(b) shows the layer pushing latency distri-
bution. We observe that push latencies are much higher
than pull latencies. This is because compression is more
expensive than decompression. For example, it takes 18 s for
Gzip to decompress a 878.9 MB layer while it takes 380.2 s
to compress it. Lz4 has the fastest compression compared
to the other two algorithms and is 43.2× and 2.3× faster
than Gzip and Pigz, respectively, for layers at the 99th

percentile. Consequently, a fast compression algorithm, such
as Lz4 or Pigz, is important for improving both layer
pulling and pushing performance.

0.001
0.1
10

1000

M
EM SS

D

H
D

D

M
EM SS

D

H
D

D

M
EM SS

D

H
D

D

M
EM SS

D

H
D

D

M
EM SS

D

H
D

D

20th 40th 60th 80th 99th

D
ur

at
io

n
(s

) Packing Unpacking

Fig. 22: Storage impact

6.2 Storage impact on packing and unpacking

Next, we investigate if packing/unpacking can become a
bottleneck for layer pushing/pulling. Figure 22 shows the
average packing and unpacking latency distribution by
using different storage media to store the uncompressed
and unpacked layer content. As expected, unpacking takes
much longer than packing because unpacking involves
more writes. For example, when an HDD is used to store
the unpacked layer content, it takes 53.5 s to pack layers at
the 99th percentile while it takes, on average, 1,853.9 s to
unpack the layers.

Packing/unpacking time also increases with layer size.
For example, when an SSD is used to store the unpacked
layer content the unpacking time increases from 0.1 s to
520.2 s as the layer size increases from 3 KB to 878.9 MB
Furthermore, using memory to save the unpacked layer
content can significantly reduce packing/unpacking time.
Packing time decreases by up to 8.6× and 17.9× compared
to using a SSD or a HDD, respectively, while for unpacking,
the time reduction is up to 129.5× and 461.5×. Therefore,
using memory, such as a RAM disk, to temporally host the
unpacked layer content and lazily write them back to persis-
tent storage can efficiently reduce packing/unpacking time
during layer pushing/pulling. Moreover, the tar archiving
process sequentially stores the files in the output tarball.
Thus, for larger layers, parallelizing the archiving process
can greatly reduce the packing/unpacking overhead.

6.3 Concurrent layer pulling/pushing impact

Figure 23(a) shows the impact of concurrent layer
pulling/pushing on compression, decompression, and net-
work transfer. When the concurrency level increases, layer
compression time, decompression time, and network trans-
fer time increase slightly. For example, when the number of
concurrent layer pulling/pushing threads increases from 2
to 4, the decompression time increases by 1.1–1.3× across
different layer sizes and the compression time increases
by 1.1–1.4×. The network transfer time also increases by
up to 1.4×. Moreover, we observe that decompression and
compression take more time than network transfer under

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0.01
0.1

1
10

100

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

20th 40th 60th 80th 99th

D
ur

at
io

n
(s

) Compression Decompression Networking

(a) Compression/decompression and network latency

0.01

1

100

10000

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

20th 40th 60th 80th 99th

D
ur

at
io

n
(s

) Packing Unpacking

(b) Packing/unpacking latency

Fig. 23: Concurrent layer pulling/pushing impact (x-axis shows the
layer size percentile and number of concurrent threads)

1

10

100

Pull Push Pull Push Pull Push Pull Push Pull Push

20th 40th 60th 80th 99th

D
ur

at
io

n
(s

)

Number of concurrent image pulls/pushes
1 2 3

Fig. 24: Image pulling/pushing latency (x-axis shows the image size
percentiles)

concurrent layer pulling/pushing threads due to IO con-
tention.

Figure 23(b) shows the concurrent layer pulling/pushing
impact on packing and unpacking when an SSD is used
to store uncompressed and unpacked layer contents. When
the concurrency level increases from 2 to 4, the time to pack
and unpack a layer increases by 1.3–2× and 1.3–1.6× respec-
tively. Consequently, using SSDs or HDDs to store unpacked
layer contents under concurrent layer pulling/pushing
will incur a considerable overhead on packing/unpacking.
However, using a RAM disk to host unpacked layer contents
under concurrent layer pulling/pushing will surely con-
sume a large amount of memory space. Therefore, using a
small memory as a packing and unpacking cache and grad-
ually writing the unpacked layer contents to SSDs/HDDs
can significantly reduce packing/unpacking time.

6.4 Pulling and pushing images

Next, we investigate how long it takes to pull or push an
image. Pulling an image includes pulling all its containing
layers in parallel while pushing an image includes pushing
all its containing layers in parallel. In this experiment, we
pull/push three layers of an image at a time, as it is Docker’s
default.

Figure 24 shows the distribution of the average latency
to pull and push images of different size percentiles under
different image pulling/pushing concurrency. First, pulling
is faster than pushing. For example, pushing images at the
60th percentile (530 MB) is 1.6× slower compared to pulling.
This is because layer pulling is faster than layer pushing as

shown in Section 6.1.
Second, the duration of both pulling and pushing in-

creases with image sizes. For instance, pushing and pulling
images at 99th percentile (4.9 GB) is 8× and 10.6× slower
compared to pushing and pulling images at 20th percentile
(190 MB) as large images usually contain more large layers
and layer pulling/pushing latency increases with layer size
(see Section 6.1). Third, the duration increases with the
number of concurrent images pulled/pushed. For example,
when the number of concurrent image pulling/pushing
threads increases from 1 to 3, the duration of both image
pulling and pushing doubles.

Overall, we find that breaking large images into small,
evenly sized layers is beneficial for achieving better
pull/push performance as large layers take longer to de-
compress and unpack and limit pulling parallelism.

7 CONTAINER STORAGE DRIVER PERFORMANCE
ANALYSIS

As a major component of containers, the I/O performance
of container storage drivers is critical to the image build time,
container startup time, and container execution time. Therefore,
in this section, we evaluate the I/O performance of multiple
widely used container storage drivers. We mainly focus
on small block sizes for several reasons: First, during im-
age building, commands like COPY, RUN apt install, or
RUN git clone can write files into layers inside building
containers. Since there are many small-sized files stored
in layers and therefore images (i.e., 50% of the files are
smaller than 4 KB as detailed in §4 and Table 1), the I/O
performance for small I/O requests (i.e., small block sizes)
is important for the image building latency.

Second, commands like RUN make build (i.e., compiles,
archives, or links) and write executables from source code
into layers inside building containers. The block sizes in-
volved in executable building usually range from few bytes
to 1 MB, e.g., half of I/O requests’ block sizes are smaller
than 4 KB [44].

We aim to answer the following questions:

1) What is the I/O performance distribution across var-
ious block sizes? How does block size impact the
read/write performance of containers?

2) What is the overhead caused by container storage
drivers? How does the performance of storage drivers
compare?

3) What is the impact of concurrency on the I/O perfor-
mance of container storage drivers?

Testbed. Our testbed is detailed in Section 6. We use SSDs
for testing container drivers. To get a stable SSD read/write
performance, we first use the dd [45] command to write
a large amount of data to SSDs with a block size of
1 GB sequentially until the write performance stabilizes at
230 MB/s. Moreover, we use flexible I/O tester fio [46]
to measure the performance of Docker container storage
drivers. To study the raw impact of graph drivers, we
clear the page cache [47], delete the data written by the
previous test, set the O_DIRECT flag, use the asynchronous
I/O engine libaio for fio, and disable write buffers on
storage drives before each test.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 2: Schemes.

Raw file system Container storage drivers
Drivers Backends

Xfs Overlay2 Xfs
Btrfs Btrfs Btrfs
Device Mapper + Xfs Devicemapper Device Mapper + Xfs

Drivers. We study three popular container storage drivers:
Overlay2 [19], Btrfs [22], and Devicemapper [20]. The
backend file systems for the above drivers are Xfs, Btrfs,
and Device Mapper (DM) thin pools in direct-lvm
mode with Xfs, respectively as shown in Table 2.

To evaluate the overhead caused by the storage drivers,
we compare each storage driver with its corresponding
backend file system without using a container, denoted as
RAW in Table 2. Each backend file system and raw file
system is created on a separate physical partition on the
SSD drive.

7.1 Small I/O requests

To evaluate the I/O performance of different storage drivers
for varying block sizes, we launch a fio container [46]. We
first create 1000 128 KB files and measure the random I/O
performance using different block sizes.

Figure 25 shows IOPS, bandwidth, and average I/O
completion latency for random reads. We observe that the
raw file systems have higher IOPS and bandwidth and
lower latencies compared to their corresponding container
storage drivers. For example, the latencies of Overlay2,
DM, and Btrfs are 1.01×, 1.2×, and 3.7× higher than their
corresponding raw file systems, Xfs-RAW, DM-RAW, and
Btrfs-RAW, when the block size is 2 KB.

When block sizes are smaller than 4 KB, Btrfs exhibits
the highest IOPS, bandwidth, and lowest latency for both
the storage driver and the raw file system. For example,
when the block size is 2 KB, the IOPS for Btrfs and
Btrfs-RAW are 23.1 K and 25.4 K, respectively, as shown
in Figure 25(a). The bandwidth of Btrfs is 1.5× and
1.9× higher than Overlay2 and DM, respectively (see Fig-
ure 25(b)) while latencies are 20.8× and 25× lower than
the latencies of Overlay2 and DM (see Figure 25(c)). For
Btrfs-RAW, the bandwidth is 1.5× and 1.6× higher than
Xfs-RAW and DM-RAW and its latencies are 76.6× and 79.2×
lower than Xfs-RAW and DM-RAW (see Figure 25(c)). How-
ever, when the block size increases, both Overlay2 and
Xfs-RAW show slightly higher IOPS and bandwidth and
lower latencies compared to the other four configurations
as shown in Figure 25.

Overall, Figure 25 indicates that during image building
or container execution, if the I/O requests’ block sizes
are smaller than 4 KB, Btrfs has the best small file read
performance compared to Overlay2 and DM. Otherwise,
Overlay2 can provide a better read performance for con-
tainerized applications.

As for write performance, Btrfs performs slightly bet-
ter than overlay2 and DM when the block size is smaller
than 4 KB as shown in Figure 26. For example, the band-
width of Btrfs is 1.1× and 1.3× higher than the bandwidth
of Overlay2 and DM, respectively. When the block size
increases, Overlay2 outperforms both Btrfs and DM.

7.2 CoW performance

To evaluate the overhead caused by the CoW mechanism of
container storage drivers, we launch a fio container, create
a new layer by randomly creating and writing 1000 128 KB
files, and measure random write performance, denoted as
creation performance. After that, we commit the container as
a new image and run the newly created image as a container
instance. We then randomly rewrite 6 KB of data in each file
in the preceding read-only layer, and measure the rewrite
performance.

We observe that when the block size is larger than
4 KB container storage drivers and their corresponding raw
file systems exhibit similar performance. Therefore, in this
experiment, we set a smaller block size for I/O requests to
2 KB.

Figure 27 shows the IOPS and bandwidth for both layer
file creation write requests and rewrite requests to the read-
only layer files. Overall, the creation write performance is
slightly higher than the rewrite performance for all the con-
tainer drivers. For example, IOPS and bandwidth degrade
4%-23%, for rewrites compared to creation writes. Btrfs
degrades the most for rewrites compared to Overlay2
and DM, though the performance of Btrfs is best in both
creation and rewriting. For raw file systems the rewrite
performance is slightly higher than creation performance,
with the exception of Btrfs-RAW as shown in Figure 27.

Moreover, we observe that raw file systems outperform
container storage drivers. For example, with the Btrfs
driver, the IOPS degrade by 11.3% compared to Btrfs-RAW
for creation. This indicates that container storage drivers
incur rewrite overhead for smaller block sizes.

7.3 Concurrency impact

To study the concurrency impact on the performance of con-
tainer storage drivers, we increase the number of read/write
threads for fio and show their I/O latency in Figure 28.
Note that the block size is set to 2 KB, as in §7.2.

Read latency increases with concurrency as shown in
Figure 28. The I/O latency increases 1.02–1.5× as the num-
ber of read threads increases from 2 to 5. We observe that
Xfs-RAW and Overlay2 are more sensitive to concurrency.
They increase by up to 1.5× and 1.14× as concurrency
increases from 2 to 5. The other four schemes only increase
by 1.02-1.06× and remain almost stable with increasing read
threads.

The write completion latency is more stable with con-
currency. The I/O latency only increases 1.04–1.2× as the
number of write threads increases from 2 to 5. For example,
the I/O latency of DM-RAW increases by up to 1.2× while for
the remaining configurations, it increases by less than 1.09×.

8 CONCLUSION

We carried out the first comprehensive analysis of container
images stored in Docker Hub. Our findings reveal that
there is room for optimizing how images are stored and
used. We summarize the dataset (§4) and deduplication
(§5) analysis in the following key observations: (1) Images
and layers contain many files, many of which are small.
For example, half of layers and images have more than
30 and 1,090 files, respectively. 50% and 90% of files are

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0

10000

20000

30000

40000

50000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

IO
PS

Overlay2 Btrfs
DM Xfs-RAW
Btrfs-RAW DM-RAW

(a) IOPS

0

100

200

300

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

B
an

dw
id

th
 (M

B
/s

) Overlay2 Btrfs DM
Xfs-RAW Btrfs-RAW DM-RAW

(b) Bandwidth

1

10

100

1000

10000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

I/O
 c

om
pl

et
io

n
la

te
nc

y
(µ

s)

Overlay2 Btrfs DM
Xfs-RAW Btrfs-RAW DM-RAW

(c) Latency

Fig. 25: I/O size impact on reads. X-axes represents I/O size

0

500

1000

1500

2000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

IO
PS

Overlay2 Btrfs DM
Xfs-RAW Btrfs-RAW DM-RAW

(a) IOPS

0

50

100

150

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

B
an

dw
id

th
 (M

B
/s

) Overlay2 Btrfs DM
Xfs-RAW Btrfs-RAW DM-RAW

(b) Bandwidth

1

10

100

1000

10000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

I/O
 c

om
pl

et
io

n
la

te
nc

y
(µ

s)

Overlay2 Btrfs DM
Xfs-RAW Btrfs-RAW DM-RAW

(c) Latency

Fig. 26: I/O size impact on writes. X-axes represents I/O size

5

7

9

11

13

15

17

4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000

C
re

at
e

R
ew

rit
e

C
re

at
e

R
ew

rit
e

C
re

at
e

R
ew

rit
e

C
re

at
e

R
ew

rit
e

C
re

at
e

R
ew

rit
e

C
re

at
e

R
ew

rit
e

Overlay2 Xfs-RAW Btrfs Btrfs-RAW DM DM-RAW

B
an

dw
id

th
 (M

B
/s

)

IO
PS

IOPS Bandwidth (MB/s)

Fig. 27: CoW performance of container storage drivers and backend file
systems

1

10

100

1000

read write read write read write read write

2 3 4 5

I/O
 c

om
pl

et
io

n
la

te
nc

y
(µ

s) Overlay2 Btrfs DM
Xfs-RAW Btrfs-RAW DM-RAW

Fig. 28: I/O latency versus the number of read/write threads

smaller than 4 KB and 26 KB (§4). This requires the under-
lying container storage drivers to efficiently manage small
files. (2) There is significant potential for deduplication
on large-scale Docker registries (as shown in our recent
paper on a deduplication system for Docker registries [48]).
Only 3% of files in the uncompressed image dataset are
unique, resulting in a deduplication ratio of 2×. (§5). (3) A
large potion of redundant files is introduced into images
by different users using slightly different source code
versions or package managers, such as apt or pip, to
build or install similar software (§5). For example, we

observed that the deduplication ratio for source code files
in the uncompressed image dataset can be as high as 73×
(see §5.4.2). Hence, we believe our deduplication analysis
is representative, even for more recent images, which may
utilize slimmer base images like alpine Linux to reduce
the size of a single image, as redundancy is often caused by
user-specific data.

Based on our image characterizations, we further inves-
tigated the I/O performance of image retrievals (§6) and
storage drivers (§7) and drew several design implications.
(1) parallel compression algorithms such as Pigz and
Lz4 can significantly reduce compression/decompression
time. Otherwise, compression/decompression can become
a bottleneck for layer pulling/pushing (§6). (2) Using
memory as a cache to temporally store unpacked layer con-
tent can significantly reduce the latency. Otherwise, pack-
ing/unpacking on HDD can become a bottleneck for layer
pulling/pushing (§6). (3) Container storage drivers add
an additional overhead to their corresponding backend
file systems, especially when block sizes are small. The
performance of container storage drivers is lower compared
to their corresponding raw backend file system (without
using containers) (§7). (4) Rewrites to files in preceding
read-only layers is slower than writing new files, for
all container storage drivers evaluated (i.e., Overlay2,
Btrfs, and DM) (§7).

As future work, we plan to extend our performance
analysis of containers to different kinds of workloads, such
as HPC applications, and extend our image analysis to more
recent datasets from different Docker registries, such as
JFrog Artifactory [49].

REFERENCES

[1] P. Menage, “Adding Generic Process Containers to the Linux
Kernel,” in Linux Symposium, 2007.

[2] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Sk-
ourtis, A. S. Warke, M. Mohamed, and A. R. Butt, “Large-scale
analysis of the docker hub dataset,” in 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 1–10, 2019.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3034517, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[3] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Cur-
rent Technology and Future Trends,” Computer, vol. 38, no. 5, 2005.

[4] J. Cito, V. Ferme, and H. C. Gall, “Using docker containers to im-
prove reproducibility in software and web engineering research,”
in Web Engineering, Springer International Publishing, 2016.

[5] K. Matthias and S. P. Kane, Docker: Up & Running Shipping Reliable
Containers in Production. 2018.

[6] “Namespaces(7) ← linux programmer’s manual.” http://man7.
org/linux/man-pages/man7/namespaces.7.html.

[7] “Control Group v2.” https://www.kernel.org/doc/
Documentation/cgroup-v2.txt.

[8] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco:
Running Commodity Operating Systems on Scalable Multiproces-
sors,” TOCS, vol. 15, no. 4, 1997.

[9] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated
Performance Comparison of Virtual Machines and Linux Contain-
ers,” in ISPASS, 2015.

[10] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs.
Lightweight Virtualization: A Performance Comparison,” in IC2E,
2015.

[11] “Docker.” https://www.docker.com/.
[12] “Docker Hub.” https://hub.docker.com/.
[13] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-

durangan, and V. Balakrishnan, “Understanding performance of
I/O intensive containerized applications for NVMe SSDs,” in
IPCCC, 2016.

[14] A. Brogi, D. Neri, and J. Soldani, “DockerFinder: Multi-attribute
Search of Docker Images,” in IC2E, 2017.

[15] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and
H. C. Gall, “An Empirical Analysis of the Docker Container
Ecosystem on GitHub,” in MSR, 2017.

[16] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Slacker: Fast Distribution with Lazy Docker
Containers,” in FAST, 2016.

[17] R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities
on Docker Hub,” in CODASPY, 2017.

[18] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Skourtis, A. S.
Warke, M. Mohamed, and A. R. Butt, “Slimmer: Weight loss secrets
for docker registries,” in IEEE Cloud, 2019.

[19] “Use the overlayfs storage driver-how the overlay2 driver
works.” https://docs.docker.com/storage/storagedriver/
overlayfs-driver/#how-the-overlay2-driver-works.

[20] “Use the device mapper storage driver.” https://docs.docker.
com/storage/storagedriver/device-mapper-driver/.

[21] “Use the zfs storage driver.” https://docs.docker.com/storage/
storagedriver/zfs-driver/.

[22] “Use the btrfs storage driver.” https://docs.docker.com/storage/
storagedriver/btrfs-driver/.

[23] V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke, D. Hildebrand,
M. Mohamed, N. Mandagere, W. Li, R. Rangaswami, and M. Zhao,
“In Search of the Ideal Storage Configuration for Docker Contain-
ers,” in AMLCS, 2017.

[24] F. Guo, Y. Li, M. Lv, Y. Xu, and J. C. S. Lui, “Hp-mapper: A high
performance storage driver for docker containers,” in SoCC, 2019.

[25] S. P. R. Dua, V. Kohli and S. Patil, “Performance analysis of union
and cow file systems with docker,” pp. 550–555, IEEE Press, 2016.

[26] D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo, “Carving
perfect layers out of docker images,” in HotCloud, 2019.

[27] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim,
“Performance comparison analysis of linux container and virtual
machine for building cloud,” pp. 105–111, 12 2014.

[28] M. J. Scheepers, “Virtualization and containerization of applica-
tion infrastructure : A comparison,” 2014.

[29] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux contain-
ers,” in 2015 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 171–172, 2015.

[30] M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J.
Matteussi, and C. A. F. D. Rose, “A performance isolation analysis
of disk-intensive workloads on container-based clouds,” in 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pp. 253–260, 2015.

[31] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless
analytics,” in OSDI, 2018.

[32] T. Harter, Emergent Properties in Modular Storage: a Study of Apple
Desktop Applications, Facebook Messages, and Docker Containers. PhD
thesis, Madison, WI, USA, 2016.

[33] “Improving copy-on-write performance in container storage
drivers.” https://www.snia.org/sites/default/files/SDC/2016/
presentations/capacity optimization/FrankZaho Improving
COW Performance ContainerStorage Drivers-Final-2.pdf.

[34] S. Talluri, A. undefineduszczak, C. L. Abad, and A. Iosup, “Char-
acterization of a big data storage workload in the cloud,” in ICPE,
2019.

[35] Q. Xu, M. Awasthi, K. T. Malladi, J. Bhimani, J. Yang, and M. An-
navaram, “Performance analysis of containerized applications on
local and remote storage,” in MSST, 2017.

[36] V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke, D. Hildebrand,
M. Mohamed, N. Mandagere, W. Li, R. Rangaswami, and M. Zhao,
“In search of the ideal storage configuration for docker contain-
ers,” in FAS*W, 2017.

[37] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, and et al., “An open-
source benchmark suite for microservices and their hardware-
software implications for cloud & edge systems,” in ASPLOS,
2019.

[38] “OpenVZ Linux Containers Wiki.” http://openvz.org/.
[39] “singularity.” http://singularity.lbl.gov/.
[40] “Google test - google testing and mocking framework.” https:

//github.com/google/googletest.
[41] “GitHub.” https://github.com/.
[42] X. Yi, F. Liu, D. Niu, H. Jin, and J. C. Lui, “Cocoa: Dynamic

container-based group buying strategies for cloud computing,”
ACM Transactions on Modeling and Performance Evaluation of Com-
puting Systems, vol. 2, pp. 1–31, 02 2017.

[43] S. Oswal, A. Singh, and K. Kumari, “DEFLATE COMPRESSION
ALGORITHM,” International Journal of Engineering Research and
General Science, vol. 4, no. 1, 2016.

[44] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and
A. Trivedi, “Understanding ephemeral storage for serverless ana-
lytics,” in ATC, 2018.

[45] “dd.” https://linux.die.net/man/1/dd.
[46] “fio(1) - linux man page.” https://linux.die.net/man/1/fio.
[47] D. P. Bovet and M. Cesati., Understanding the Linux Kernel. 2018.
[48] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Sk-

ourtis, L. Rupprecht, A. Anwar, and A. R. Butt, “Duphunter:
Flexible high-performance deduplication for docker registries,” in
2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20),
pp. 769–783, 2020.

[49] J. Artifactory. https://jfrog.com/.

Nannan Zhao is a Ph.D. candidate in the Department of Computer
Science at Virginia Tech. Her research areas include distributed storage
systems, key-value stores, flash memory, and Docker container.
Vasily Tarasov is a data storage researcher at IBM Almaden Research
Center. His research areas include performance analysis of file systems
and I/O stack design.
Hadeel Albahar is a Ph.D. candidate in the Department of Electrical
and Computer Engineering at Virginia Tech. Her research interests
include distributed storage systems, cloud computing, containerization,
and serverless computing.
Ali Anwar is a distributed systems researcher at IBM Almaden
Research Center. His research areas include distributed ma-
chine/federated learning and serverless.
Lukas Rupprecht is a data storage researcher at IBM Almaden Re-
search Center. His research areas are related to scalability and perfor-
mance of distributed systems.
Dimitrios Skourtis is a data storage researcher at IBM Almaden Re-
search Center. His research areas are related to resource management
and scheduling.
Arnab K. Paul is a Ph.D. candidate in the Department of Computer Sci-
ence at Virginia Tech. His research areas include parallel I/O systems,
storage systems, high-performance and distributed computing.
Keren Chen is an undergraduate in the Department of Computer Sci-
ence at Virginia Tech. His research areas include distributed storage
systems and Docker container.
Ali R. Butt is a professor in the Department of Computer Science
at Virginia Tech. His research areas include distributed systems and
parallel computing.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 15,2020 at 01:35:08 UTC from IEEE Xplore. Restrictions apply.

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.docker.com/
https://hub.docker.com/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay2-driver-works
https://docs.docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay2-driver-works
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/zfs-driver/
https://docs.docker.com/storage/storagedriver/zfs-driver/
https://docs.docker.com/storage/storagedriver/btrfs-driver/
https://docs.docker.com/storage/storagedriver/btrfs-driver/
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
http://openvz.org/
http://singularity.lbl.gov/
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/
https://linux.die.net/man/1/dd
https://linux.die.net/man/1/fio
https://jfrog.com/

